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Abstract—Latent Dirichlet Allocation (LDA) is a widely
used machine learning technique in topic modeling and data
analysis. Training large LDA models on big datasets involves
dynamic and irregular computation patterns and is a major
challenge to both algorithm optimization and system design.
In this paper, we present a comprehensive benchmarking of
our novel synchronized LDA training system HarpLDA+ based
on Hadoop and Java. It demonstrates impressive performance
when compared to three other MPI/C++ based state-of-the-art
systems, which are LightLDA, F+NomadLDA, and WarpLDA.
HarpLDA+ uses optimized collective communication with a
timer control for load balance, leading to stable scalability in
both shared-memory and distributed systems. We demonstrate
in the experiments that HarpLDA+ is effective in reducing
synchronization and communication overhead and outperforms
the other three LDA training systems.

I. INTRODUCTION

Latent Dirichlet Allocation (LDA) [1] is a widely used
machine learning technique in topic modeling and data
analysis. LDA training is an iterative process, which starts
from a randomly initialized model with parameters to learn,
iteratively computing and updating the model until it con-
verges. A major challenge of scaling is due to the fact that
computation is irregular and the model size can be huge.
In the meantime, parallel workers need to synchronize the
model continually.

State-of-the-art LDA training systems (trainers) are imple-
mented to handle billions of documents, hundreds of billion
tokens, millions of topics and millions of unique tokens.
However, the pros and cons of different approaches in the
existing tools are often hard to explain because of the many
trade-offs between effectiveness (contributions to converge)
and efficiency (computational cost) of model updates. Note
that model update efficiency should be distinguished from
the traditional parallel efficiency of speedup over paral-
lelism.

One of the popular approaches is to decrease the time
complexity of the computation by introducing approxima-
tions. Another widely used idea is to reduce the synchro-
nization overhead by using an asynchronous parallel system
working on a stale model, where the trainer is not using

the latest model data. Although these approaches improve
model update efficiency, they are done at the cost of the
model update effectiveness for convergence. Our approach
however, is to use a synchronized system and optimize LDA
trainers from a different perspective. The aim is to preserve
the effectiveness and at the same time improve parallel
efficiency by reducing the synchronization overhead.

Our main contributions can be summarized as follows:
• Review state-of-the-art LDA training systems and sum-

marize their design features.
• Propose new mechanisms to reduce overhead in syn-

chronized systems, dynamic scheduling for shared
memory subsystems and Timer Control for distributed
systems.

• Implement HarpLDA+ based on Hadoop while demon-
strating excellent performance and scalability.

• Summarize our system design approach and its impli-
cations for other machine learning algorithms.

In this paper, Section II introduces the background of the
LDA algorithm and related work, while Section III analyzes
the architecture and parallel efficiency of existing solutions.
Section IV describes our system design and implementation
details of HarpLDA+ and Section V presents experimental
results coupled with a performance analysis. Finally, Sec-
tion VI draws conclusions and discusses future work.

II. LDA ALGORITHM AND RELATED WORK

A. LDA with Collapsed Gibbs Sampling
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Figure 1: Latent Dirichlet Allocation. N and M are suf-
ficient statistics for the probability distribution φ and θ
respectively in the original graphical model.

LDA is a topic modeling technique to discover latent
structures inside data. As shown in Fig. 1, data is represented



as a collection of documents, where each document is a
bag of words. LDA models each document as a mixture of
latent topics and each topic as a multinomial distribution
over words.

Many algorithms have been proposed to estimate the
parameters for the LDA model. Collapsed Gibbs Sampling
(CGS) [2], a Markov chain Monte Carlo (MCMC) algorithm,
is commonly used for large scale LDA training. In the
MCMC framework, samples can be drawn according to
the unknown posterior distribution by a carefully designed
transition function that visits the whole parameter space.
Gibbs sampling is one such design that visits the parameter
space from one dimension to the other. For each iteration,
it fixes all the states of other dimensions and only updates
the current visiting one.

In CGS, each training data point or token is assigned to a
random topic denoted as zij at initialization. Then it begins
to reassign topics to each token at position i in document j,
xij = w, by sampling from a multinomial distribution of a
conditional probability of zij as shown below:

p
(
zij = k | z¬ij , x, α, β

)
∝

N¬ijwk + β∑
wN

¬ij
wk + V β

(
M¬ijkj + α

)
(1)

Here superscript ¬ij indicates that the corresponding token
is excluded. V is the vocabulary size, Nwk is the token
count of word w assigned to topic k in K topics, and Mkj

is the token count of topic k assigned in document j. The
matrices Z, N and M , form the model to be learned. Hyper-
parameters α and β control the topic density in the final
model. The model gradually converges during the process
of iterative sampling.

Although CGS generally requires a large number of
iterations to converge, it is memory efficient and therefore
scalable for large models. In this paper, we focus on the
LDA trainers under the CGS algorithm family.

B. Related Work on Parallel LDA-CGS

Gibbs sampling in LDA-CGS is a strictly sequential pro-
cess. Approximate Distributed LDA (AD-LDA)[3] proposed
to relax the requirement of sequential sampling of topic
assignments based on the observation that the dependence
between the update of one topic assignment zij and the
update of any other topic assignment zi′j′ is weak. In AD-
LDA, the distributed approach is to partition the training
data for different workers, run local CGS training and
synchronize the model by merging back to a single and
consistent set of N . PLDA [4] implemented the AD-LDA
algorithm in both MPI and MapReduce, where the Allreduce
operation was used for synchronization.

A synchronized algorithm that requires global synchro-
nization at each iteration sometimes may not seem feasible
or efficient; Therefore, an asynchronous solution becomes
the alternative choice. Async-LDA [5] extended AD-LDA

to an asynchronous solution by a gossip protocol. Yahoo!-
LDA [6][7] was the first production level LDA trainer.
The mechanism is an asynchronous reconciliation of the
model, one word at a time for all samplers. Furthermore,
Parameter Server [8] was introduced as a general framework
that scaled to thousands of nodes. Another advancement was
presented by [9]. It proposed a “mixed” approach SSP (Stale
Synchronous Parallel), which is a parameter server that can
limit the maximum age of the staleness.

Some researchers have investigated synchronized algo-
rithms. For instance, a novel data partitioning scheme [10]
was proposed to avoid memory access conflicts on GPUs.
The basic idea is to partition the training data into blocks,
where all samplers start from the diagonal blocks and
then shift to the right neighbor all together. In contrast, a
general machine learning framework Petuum Strads [11][12]
extended this idea, where parameters of the ML program
were partitioned for different workers. As the all-to-all
communication observed in the asynchronous trainers is
hard to optimize, a similar synchronized design was pro-
posed with collective communication operators [13] which
achieved better performance. Finally, F+Nomad-LDA [14]
was introduced based on the idea of NOMAD [15], in which
each variable (one row of N ) becomes the basic unit to be
scheduled, and the ownership of a variable is asynchronously
transferred between workers in a decentralized fashion.

Other research involves optimization to the sampling al-
gorithm. According to equation (1), a naive implementation
involves drawing a sample from a discrete distribution which
contains two steps: first calculate the probability of each
event as p(zij = k), k ∈ K, secondly generate a random
number uniformly from [0−1) and search linearly along the
array of the probabilities, stopping when the accumulation
of probability mass is greater than or equal to the random
number. The time complexity for this is O(K). SparseLDA
[16] decomposed the numerator of equation (1) into three
parts: αβ, β ∗M¬ijkj and N¬ijwk (M¬ijkj + α). The first part
is a constant; while the second part is non-zero only when
Mkj is non-zero, and the third part is non-zero only when
Nwk is non-zero. Both the probability calculation and search
part can benefit from utilizing the characteristics of this
sparseness pertaining to the model. When using this feature,
the computation time complexity drops to O(Kd + Kw),
which is equivalent to the average number of non-zero items
in column of M and row of N and is typically much
smaller than K. F+Nomad-LDA provides an optimization
on the search part by using a O(logK) binary tree search
instead of a O(K) linear search by a tree data structure.
Based on Alias Table which allows us to draw subsequent
samples from the same distribution in O(1) time, Alias-LDA
[17] uses the Metropolis Hasting (MH) sampling process
to draw each sample correctly from the stale alias table
and achieves O(Kd) complexity. LightLDA extends [18]
the Alias-LDA idea by decomposing equation (1) into two



Trainer Sampler Sampling Intra-node Inter-node ModelTime Complexity Design Design Comm
PLDA PlainLDA O(K) Allreduce Allreduce collective stale
Yahoo!LDA SparseLDA O(Kd +Kw) Allreduce Asynchronous async stale
StradsLDA SparseLDA O(Kd +Kw) Allreduce Rotation async stale
LightLDA MH O(1) Asynchronous Asynchronous async stale
F+NomadLDA F+Tree O(logKd + logKw) Rotation Rotation async latest
WarpLDA MH O(1) DelayUpdates Rotation collective stale
HarpLDA+ SparseLDA O(Kd +Kw) Rotation Rotation collective latest

Table I: System Architectures of LDA Trainers. AllReduce, works on a stale model and does synchronization on model
replicas. Asynchronous, works on local replicas and synchronizes them in a best effort through a group of parameter servers.
Rotation, works on distributed model partitions and the model partitions ‘rotate’ among the workers while at the same time
keeping model updates conflict free.

parts and alternating the proposals into a cycle proposal,
thus achievingO(1) complexity. WarpLDA [19] introduces a
more aggressive approach based on the idea of MH to delay
all the updates after sampling one pass of Z, by drawing the
proposals for all tokens before computing any acceptance
rates.

HarpLDA+, however, adopts the standard SparseLDA
sampling algorithm and a synchronized system design in
order to preserve the effectiveness of the model update while
improving the parallel efficiency .

III. PARALLEL DESIGN PRINCIPLES

A. Parallel Efficiency

Parallelizing a sequential algorithm inevitably introduces
overhead. Parallel efficiency can be measured by Speedup,
which is defined as parallel performance over original se-
quential performance in parallel processing, where we have:

Speedup =
T1
TP

=
1

f + s+ 1−f
P

(2)

With P workers, f is the serial portion that cannot be
parallelized and parallelism introduces a time overhead of
s x T1. In parallel CGS, f is small, so the overhead time of
s becomes the major issue in order to achieve good parallel
efficiency. Communication overhead comes from the addi-
tional cost of moving data among the parallel workers. In a
shared memory system, this overhead is generally ignored
with the assumption of a uniform memory access cost. In a
distributed system, asynchronous communication or pipelin-
ing can be used to overlap communication with computation
and reduce this overhead. Synchronization overhead comes
from the additional cost of coordinating parallel workers
that reach the same state in order to finish a task together.
Asynchronous trainers try to reduce this type of overhead by
avoiding a global consensus, relaxing the consistency of the
model and working in an independent fashion. Synchronized
trainers, however, will face the issue of load imbalance,
which is a major source of synchronization overhead.

Some data partitioning algorithms have been proposed
that aim to improve load balancing for LDA training. For

example, random permutations on the document usually
give good results. Some algorithms partition the word-topic
model, whereas randomized algorithms do not perform as
well as greedy algorithms [13][19] since the word frequency
follows the power-law distribution. Unfortunately, even op-
timal partitioning algorithms cannot completely solve the
load imbalance problem. Sampling algorithms may perform
differently on the same number of tokens with different
distributions. In practice, variations of node performance and
stragglers are not uncommon even in homogeneous HPC
clusters.

B. System Architectures

Machine learning algorithms can generally tolerate some
kind of staleness in the model. Using stale models in
computation can degrade the convergence rate but potentially
boost the system efficiency because it relaxes the constraints
for system design. For example, the sum of the topic count∑

wNwk in the denominator of equation (1) is hard to keep
in strict consistency while in a parallel situation, because
using locks on data being frequently accessed will give poor
performance. A typical solution is to remove the locks and
keep using a local copy of the model. Furthermore, synchro-
nizing the model at the end of each epoch is sufficient as
the deviations are small. However, the decision of whether
to use stale values of Nwk and Mkj in the numerator of
equation (1) is more sensitive to model convergence.

In order to better present HarpLDA+’s design, we sum-
marize the features and parallel architectures of current CGS
trainers in a Model-Centric view (see Table I).

IV. HARPLDA+: DESIGN AND IMPLEMENTATION

HarpLDA+ builds upon Harp1, which includes a Java
collective communication library released as a plugin for
Hadoop. While our previous work [13] optimizes commu-
nications in different architectures, HarpLDA+ focuses on
the Rotation architecture and reducing the synchronization
overhead.

1https://dsc-spidal.github.io/harp/



A. Programming Model Based on Collective Communica-
tion

Collective communication within a Rotation design is
easy to program. For each iteration, all workers concurrently
sample on a local training data partition with a local model
split without conflicts in model updates. Afterwards, a call
to a collective communication operator ‘rotate’ is made,
in order to exchange the model partitions globally. (see
Algorithm 1)

Algorithm 1: HarpLDA+ Parallel Pseudo Code

input : training data X , P workers, model A0, number of
iterations T

output: AT

1 parallel for worker p ∈ [1, P ] do
2 for t = 1 to T do

// initialize: model At0 is At−1

3 for i = 1 to P do
// update local model split by

sampling on local training
data

4 Ati
p′ = Sampling(Xp, A

ti−1

p′ )

// synchronization to exchange
model splits

5 rotate(Ati
p′ )

A concrete scheduling strategy is built into the ‘rotate’
operator. So long as each model split is owned by only one
worker, the scheduling strategy guarantees to be conflict free.
For instance, when a rotate call returns, all the workers can
continue sampling concurrently without causing conflicts
when updating the model. A default strategy shifts the model
splits to their neighbor nodes (see Fig. 2a). Selecting the
neighbor on a random permutation of the node list is also
easy to implement. Furthermore, a priority based scheduler
and a work load based scheduler can be implemented in this
framework without losing the simplicity of the programming
model.

Algorithm 1 presents a general framework for scheduling,
where multi-threading and distributed parallelism can adopt
the same procedure. We can however improve it to reduce
synchronization overhead, leveraging the computation char-
acteristics in these two different environments.

B. Dynamic Scheduling in Shared Memory Subsystems

Dynamic scheduling provides a low cost solution to
remove synchronization overhead in the shared memory
nodes of our system. It dynamically assigns workload to idle
threads in order to increase the throughput of tasks. This is
an effective solution, which is also used in parallel matrix
factorization for recommender systems [20].
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Figure 2: Model Rotation Framework and Dynamic schedul-
ing in Shared Memory

In Fig. 2b, training data is partitioned into blocks, with
the row partition using a random permutation of document
id and the column partition using a greedy algorithm based
on word frequency. Indexes are constructed during the
initialization phase in order to build the map from word id to
the related documents appearing in each block. In this case,
the minimal unit for scheduling is a block. Furthermore, the
number of partitions is larger than the number of threads,
which means that there are always ‘free’ rows and columns
when one thread finishes its current task. In this example,
thread 1 finishes first, then the scheduler selects a new
block randomly from the ‘free’ blocks, which are the white
blocks in the figure. Because thread 2 and thread 3 are still
working, the rows and columns are occupied accordingly as
denoted by the gray blocks. In a shared memory system,
the scheduler does not move data but instead assigns data
addresses of selected free blocks to the idle threads. The
wait time of the threads are bounded by the overhead of the
scheduler. In the case the number of threads is P and the
number of splits is L, so a L×L matrix maintains a two level
status: free, or finished. The scheduler can randomly select
a free block by scanning the matrix with time complexity
of no more than O(L2). The larger the L, the lower the
number of conflicts and lower the wait time, but the more
overhead introduced by the scheduler itself. Thus, there is a
trade-off. By experimentation, we found that L =

√
2P is a

good choice in most cases.

C. Pipelining and Timer Control in Distributed Systems

In distributed systems, the cost of data movement cannot
be ignored. As shown in Fig. 2a, each worker holds a static
row partition of the training data and corresponding docu-
ment related model. Only the word-topic model partitions
move among the workers. To reduce the synchronization
overhead, the first step is to reduce the overhead of the
communication inside the rotate operator. Pipelining is a
broadly used technique to solve this kind of problem, by
overlapping I/O threads with computing threads. First, each
block is split further into two slices horizontally, and the



inner loop of algorithm 1 is modified to become a loop over
each slice. Consequently, the original rotate call becomes
two rotate calls on each slice. As long as the communication
time is less than the computing time spent on one slice,
the pipeline will be effective in hiding the overhead from
communication.

Another overhead of a rotate call is the time taken
waiting for all workers to complete their computation. In the
presence of load imbalance, all workers wait for the slowest
one to finish. To solve this problem, we first discuss the
sampling order of the Gibbs Sampling Algorithms. We note
that LDA trainers can use two common scan orders: random
scan and deterministic scan. For a Gibbs sampler, the usual
deterministic-scan order proceeds by updating first x1, then
x2, then x3, . . . xd and back to x1, visiting the state space X
by a sequential order. Another random scan version usually
proceeds at each iteration by choosing i uniformly from
1, 2, ..., d. It has been demonstrated [21] that the sampling
order affects the convergence rate of different models but
a deterministic scan is commonly used to gain the benefits
of hardware locality. This is the situation in current LDA
trainers, in which sampling occurs over document or over
word on Z via deterministic scan. Generally, the order with
a better memory cache hit rate gives a better performance.
For large datasets with V << D, word order is better. It
is hard to achieve good performance with a pure random
scan due to the cache miss issues. However, HarpLDA+
uses a quasi-random order. The dynamic scheduler picks
a block uniformly from the free block list. While inside
the block, we still keep the word sampling order. Although
no significant performance difference is observed for the
different sampling orders in LDA-CGS, we found that the
random sampling order provides a natural solution for load
balancing.

Worker1

rotate rotate

Time

Worker2

Worker3

rotate_timer

Figure 3: Timer to Control the Synchronization Point

For a given worker in Fig. 3 the white space between two
rotate operations denotes the wait time between the end of
the computation and the start of synchronization. If we adjust
the synchronization point before the computation finishes,
the gap of wait time can be closed. Under the deterministic
scan order, the adjustment is harder to achieve due to the
housekeeping work needed and the original scan order is
lost. For a random scan, this adjustment does not change
the property of the uniform random selection of blocks. The
third rotate call demonstrates this mechanism in Fig. 3.

We further propose a simple solution for the LDA-CGS
trainer. Each sampler only works for the same period of
time and then the samplers do synchronization all together.
They all use a timer to control the synchronization point
rather than waiting until all the blocks to finish. Because the
model size shrinks and the computation time drops during
the process of convergence, we’ve designed an auto-tuning
mechanism to set the value of the timer for each iteration
in HarpLDA+.

First, the timer works best when the communication can
be fully overlapped by computation, where the computation
time or the number of training data points being processed
should have a lower bound L. Secondly, we make sure
that all workers stop at the same time before any of them
complete their work. This implies an upper bound H . L and
H are set as input parameters. In normal cases, L = 40%,
H = 80% are good choices.

We set up heuristic rules to automatically determine the
values of timer ti based on the L,H settings.
• Rule 1: During the first iteration, we set the timer to

a constant t0, and obtain the processing ratio R0 for
each worker at the end of the iteration.

• Rule 2: When Ri is found to be smaller than L, adjust
ti+1 = ti ∗ 2 in order to quickly catch up. (In the first
iteration, repeat this step until Ri+1 is in the range of
L and H .)

• Rule 3: When Ri is found to be larger than H , ti+1

will be reduced in half.

D. Other Implementation Issues

For a high performance parallel LDA trainer, besides
the key factor of the original sampling algorithm and the
parallel system design, implementation details may also be
important. HarpLDA+ is a Java application, where primitive
data types are used in critical data structures. For instance,
we found that using primitive arrays with array indexing
for the model matrix is significantly faster than using a
hashmap in HarpLDA+. Furthermore, minor improvements
for SparseLDA are very helpful. Topic counts are sorted
periodically to reduce the linear search time of sampling.
Caching is also used to avoid repeat calculations. When
sampling multiple tokens with the same word and document,
the topic probabilities calculated for the first token are reused
for the tokens that follow.

V. EXPERIMENTAL EVALUATION

A. Setup of Experiments

Five datasets are used in the experiments (see Table II),
which are open datasets in related work. Here, pubmed2m
is a subset of Pubmed Dataset2, clueweb30b is a subset of
ClueWeb09 Dataset3, enwiki is built from English articles

2https://archive.ics.uci.edu/ml/datasets/bag+of+words
3http://lemurproject.org/clueweb09.php/
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Figure 4: Single Node Performance with 3 rows corresponding to 3 datasets nytimes (K=1000), pubmed2m (K=1000),
enwiki (K=10000) respectively. The columns are different observables with columns 1 to 3 reporting sequential single
thread measurements and column 4 with 32 threads. Column 5 plots the results against different thread counts. Columns 1
and 5 show Convergence Speed, Column 2 is Convergence Rate and Column 3 is Throughput. Column 5 shows Throughput
as bars with scale on left and Parallel Speedup as curves with scale on right.

Dataset Docs V ocabulary Tokens DocLen
nytimes 299K 101K 99M 332/178
pubmed2m 2M 126K 149M 74/33
enwiki 3.7M 1M 1B 293/523
bigram 3.8M 20M 1.6B 434/767
clueweb30b 76M 1M 29B 392/532

Table II: Datasets for LDA Training, where DocLen repre-
sents mean and std. dev. values of document length

from Wikipedia and bigram is a bigram version of enwiki
dataset.

trainer language multithreading communication
LightLDA C++ Pthread Zeromq+MPI
NomadLDA C++ Intel TBB MPI
WarpLDA C++ OpenMP MPI
HarpLDA+ Java Java Thread Harp Collective

Table III: Trainers for Experiments

We select four state-of-the-art CGS trainers for compari-
son in Table III. They represent the different system designs
described in Section III-B. Also two versions of HarpLDA+
are included, Harp-nods without dynamic scheduling, and
Harp-notimer without timer control.

To evaluate the performance, we use the following met-
rics. Firstly, we choose Model log likelihood of the word-
topic model to represent the status of convergence. Secondly,
we select three main evaluation metrics as follows: 1)

Convergence rate evaluates the effectiveness of the algorithm
by depicting the relationship between convergence level and
model update count. 2) Throughput evaluates the efficiency
in a system view by measuring the model update counts
per second. 3) Convergence speed is the metric to evaluate
a trainer’s overall performance, which depicts the relation
between convergence level and training time. It represents
the overall performance resulting from the combination of
efficiency and effectiveness of model updates.

In regards to hardware configuration, all experiments are
conducted on a 128-node Intel Haswell cluster at Indiana
University. Among them, 32 nodes each have two 18-core
Xeon E5-2699 v3 processors (36 cores in total), and 96
nodes each have two 12-core Xeon E5-2670 v3 processors
(24 cores in total). All the nodes have 128 GB memory
and are connected by QDR InfiniBand. As for the software
configuration, all C++ trainers are compiled with gcc 4.9.2
and -O3 compilation optimization. HarpLDA+ compiles
with Java 1.8.0 64 bit Server VM and runs in Hadoop 2.6.0.
The MPI runtime is mvapich2 2.3a for F+NomadLDA and
mpich2 3.0.4 for LightLDA. For MH trainers, we set the MH
step parameter to 1 for WarpLDA, select the best one for
LightLDA, 16 for clueweb30b and 4 in the other datasets.
We set the hyper-parameters α = 50/K and β = 0.01 in
all the experiments. The setting of experiment runs with n
nodes and m threads on each node and is denoted as nxm
in the following diagrams. On a similar note, K signifies



the number of topics used in the LDA trainers.

B. Experimental Results

1) Performance of Sequential Algorithm: We first analyze
the performance of the sampling algorithm by evaluating the
trainers in a single thread setup.

As shown in Fig. 4, in column 1 of Convergence Speed,
WarpLDA is the fastest trainer due to its successful trade-
off between the efficiency and effectiveness of updates.
Furthermore, F+Nomad-LDA is faster than HarpLDA+ and
demonstrates even better performance than WarpLDA in
the case of large K. For this assessment, LightLDA is
consistently the slowest.

Column 2 of Convergence Rate shows that NomadLDA,
a standard SparseLDA sampler, always runs the fastest.
HarpLDA+ is a bit slower due to the caching of the
model for identical words. Both MH samplers, LightLDA
and WarpLDA are significantly slower since they are an
approximation for the original CGS, while WarpLDA is the
slowest because of its update delay strategy making each
update much less effective. The rank of convergence rate is
consistent in parallel versions of these trainers.

In column 3 of Throughput, WarpLDA shows much better
throughput than the others due to optimization of memory
use obtained from removing the random matrix access.
Among the others, NomadLDA performs slightly better.

2) Intra-node Parallel Efficiency: We run a test by in-
creasing number of threads in order to evaluate its impact on
performance. As seen in Fig. 4, column 4, the convergence
speed at 32 threads shows that the performance rank of
NomadLDA drops, and HarpLDA+ takes its place and runs
as well as WarpLDA at K=1000 and exceeds it’s perfor-
mance for K=10000. In Fig. 4 column 5 called Speedup
in Throughput, the bar chart shows the average throughput
increasing as the parallelism (thread count) increases.

Trainer CPU Time Wait
Effective Spin Overhead Time

WarpLDA 0.91 0 0 0.09
NomadLDA 0.75 0.24 0 0
LightLDA 0.25 0 0 0.74
HarpLDA+ 0.98 0 0 0.02
Harp-nods 0.75 0 0 0.24

Table IV: Time Breakdown by VTune Concurrency Anal-
ysis. Effective Time is CPU time spent in the user code,
Spin time is wait time during which the CPU is busy, and
Overhead time is CPU time spent on the overhead of known
synchronization and threading libraries, Wait Time occurs
when software threads are waiting due to APIs that block
or cause synchronization. The enwiki dataset is used in
experiments (K=1000) and runs on 32 threads of a single
node.

Concurrency Analysis by VTune Amplifier4 is utilized

4https://software.intel.com/en-us/intel-vtune-amplifier-xe

to exhibit the time breakdown with normalized results
in Table IV. WarpLDA demonstrates excellent efficiency,
as it not only decouples the memory access to the two
model matrices but also removes the model update conflicts,
in which all threads are running in a pleasingly parallel
fashion programmed in OpenMP. In this implementation,
load imbalance is observed to contribute to the 9% wait
time. This may come from the default static scheduler in
OpenMP. NomadLDA has zero wait time, but this does
not necessarily signal efficiency. All threads keep trying
to pop a model column from the concurrent queue to run
sampling, and yield when the pop call fails. A large number
of yield calls are observed to give 24% on spin time. Load
imbalance is the main reason behind the inefficiency as well.
F+NomadLDA supports different kinds of schedulers, but
in our test, the default Shift version and the Load Balance
version do not show much differences. LightLDA shows a
very high Wait Time ratio. After analysis of the hot-spots,
a problem is found in the thread safe queue code. At the
end of each iteration, all sampling threads push the updated
model (delta value) to a shared queue which will later be
pushed to the parameter server by aggregator threads. High
contention for this object causes reduced parallel efficiency.
HarpLDA+ performs the best with only 2% wait time, which
is much less than that of Harp-nods, the trainer without
dynamic scheduling. When comparing with other trainers,
the overhead in our Java dynamic scheduler is much less as
shown in Fig. 5.
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Figure 5: Load Balance and Overhead Ratio. CV (coefficient
of variation) is the ratio of the standard deviation to the mean
of the sampling time. Overhead time for each thread is the
iteration time excluding the actual sampling time.

In order to further breakdown the actual working time, we
add thread level logs to record the actual sampling time in
each iteration. See Fig. 5a, F+NomadLDA has a very large
CV level depicting serious problems with load imbalance.
Fig. 5b, F+NomadLDA again shows a high overhead ratio.
LightLDA is better but still larger than 10%. In contrast,
HarpLDA+ presents a relatively large initial overhead, which
diminishes over time. This is due to a fixed timer being set
to 1 second in the first iteration, while constant overheads
of hundreds of milliseconds make the overhead ratio appear
high. As seen in the charts, HarpLDA+ demonstrates the best
load balance and a small overhead. WarpLDA is excluded
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Figure 6: Figure 6: Distributed Performance. The two rows correspond to different datasets with row 1 as enwiki (K=10000)
and row 2 as clueweb30b (K=5000). The parallelism is 8 (nodes) by 16 (threads) in row 1 and 20 by 16 in row 2 for
columns 1 to 4. Column 5 shows plots versus node count with 16 threads each. F+NomadLDA fails due to out-of-memory
problems in column 5, row 2. Column 1 is Convergence Speed, Column 2 is Speedup versus Model Log-Likelihood, Column
3 is Load Balance and Column 4 is overhead. Column 5 shows Throughput as bars with scale on left and Parallel Speedup
(measured with respect to lowest node count 2x16 in row 1 and 20x16 in row 2) as curves with scale on right.

in this experiment because it is implemented with OpenMP
and thread log can not be added.

3) Distributed Parallel Efficiency: In this section, we
test the LDA trainers in distributed mode. WarpLDA is
not included because the official source code release does
not support distributed mode. Moreover, we expect that the
distributed design presented in its paper might not scale well
because of the need to exchange a much larger model Z in
each iteration among all the workers. F+NomadLDA runs
on an InfiniBand network directly supported by mvapich2,
but lightlda runs on IPoIB (TCP/IP protocol on InfiniBand
network) supported by mpich2, and as a Java application,
HarpLDA+ runs on IPoIB too. This means F+NomadLDA
can potentially utilize a bandwidth which is at least two
times larger in these experiments and be easier to scale.

As shown in Fig. 6, column one represents convergence
speed, where HarpLDA+ has the best overall performance.
In column two of Speedup in Time, HarpLDA+ is used as
the base to calculate its speedup over other trainers, which is
the ratio of the training time to reach the same convergence
level. HarpLDA+ is more than 6x faster than LightLDA,
2x faster than NomadLDA and about 50% slower when
timer control is not used. Load Balance of Computation
and Overhead in distributed mode are similar to those in
the multi-threading mode, where the vectors of the average
computation time and overhead time of all the threads on
each node are used. In contrast, HarpLDA+ demonstrates
significant differences from Harp-notimer under these two
metrics, which is the factor behind the boost in performance.

LightLDA, as an asynchronous approach, has less prob-
lems of load imbalance than the synchronized approaches.

The default staleness is set to one which can tolerate
any performance undulations only if the lag of the local
model replica is less than two iterations. This mechanism is
effective in order to provide stability and good scalability for
different cluster configurations. This is showcased in column
five. On the other hand, LightLDA has a lower convergence
rate stemmed from its asynchronous design and is less
efficient during the multi-threading parallel implementation.

F+NomadLDA is observed to have the most load imbal-
ance problems and also exhibits a very high overhead ratio.
In the ewniki 10K experiment, the overhead even reaches
90%, i.e., most of the workers are waiting for data. When
using a rotation architecture and running directly on the
InifiBand network, this result is not expected. One possible
reason for this is the task granularity. It takes very small
granularity to schedule on each column of the word-topic
model, which seems to have a large overhead, especially
when K increases to a large number.

4) Communication Intensive Case Study: The follow-
ing experiment runs on the bigram dataset, which has a
20million vocabulary size that is used to test the special
communication intensive case in the distributed mode. We
set the parameter of the bound in HarpLDA+ to [150%,
350%] to overlap the communication time in this special
case, i.e., the dynamic scheduler keeps assigning those
sampled blocks to free threads until the timer is timeout.
This trainer is named Harp-repeat.

Fig. 7d shows that when the communication time domi-
nates in the training process, all the trainers have a large
overhead ratio. In LightLDA, as SSP forces the workers
to keep the staleness of the local model within a range,
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Figure 7: Performance on bigram with 10x8 K=500

the overhead comes from the wait time. Harp-repeat signifi-
cantly decreases the overhead and increases the throughput,
but at the same time, the effectiveness drops in 7b, to be
worse than LightLDA. Hence, harp-repeat does not gain
in overall performance. In contrast, Harp-notimer retains
the best overall performance. Therefore we focus on the
optimization to further decrease the size of the model that
needs to be exchanged.

5) Straggler Case Study: The notion of a straggler is
a situation in cloud computations, where some nodes are
significantly slower than others in a job for different reasons.
In our experiment on the HPC cluster, we also encounter
stragglers more often than expected.
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Figure 8: Straggler Test on clueweb30b with 40x16 K=5000

In Fig. 8, all the trainers except for HarpLDA+ have
been greatly affected by stragglers. When the CV value
increases up to around 1.0, the overhead ratio increases
more than 80%, throughput drops sharply, and as a result
the overall performance drops sharply. For instance, the
task does not even converge in 60,000(s) time where a

normal run needs about 10,000(s). LightLDA benefits by its
SSP design to represent a stable and scaleable trainer in a
cluster with minor variances. However, it cannot handle large
variances such as the straggler, in which case it stalls. In
contrast, F+NomadLDA has a load balance scheduler which
is designed to deal with these kinds of situations. When
some nodes are detected to be slow and the number of tasks
in its task queue is too large, the scheduler will decrease the
probability of sending a new model to the node. However,
the performance results are poor due to implementation
issues. HarpLDA+ demonstrates a stable performance in the
case of straggler. The speedup on the convergence speed of a
normal run without a straggler (HarpLDA+-normal) is about
1.25, which means losing about 25% performance when a
straggler occurs.

6) Large Model Case Study: Finally, we test the trainers
on very large models, with K set to 100 thousand and 1
million respectively. NomadLDA fails in such settings with
out-of-memory errors.
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Figure 9: Big Model Test on clueweb30b with 30x30

For Convergence Speed in Fig. 9b, when K increases
to 1 million, LightLDA runs much faster than HarpLDA+
due to time complexity of O(1) in the MH sampling
algorithm. However this only happens at the beginning of the
training phase. Afterwards it slows down and is surpassed
by HarpLDA+ because of its ineffectiveness of computation,
despite using a very large MH step parameter such as 128
in Fig. 9. In this big model experiment, HarpLDA+ demon-
strates impressive performance, given that the algorithm has
a time complexity of O(Kd +Kw) while that of LightLDA
is O(1).

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we investigate the system design of large
scale LDA trainers with a focus on parallel efficiency. Based
on these, we introduce HarpLDA+, selecting the Rotation
architecture and proposing a new synchronized LDA training
system with reduced overhead. This entails a two level
parallelism design, in which a dynamic scheduler is used
for multi-threading, while rotation with timer control is used
for distributed parallelism. Through extensive experiments,
we demonstrate that the HarpLDA+ outperforms the other
approaches in scaling and stability.

From HarpLDA+, we’ve gained useful insights in design-
ing a large scale Machine Learning system.



• Optimization of a sequential algorithm does not neces-
sarily lead to high performance parallel systems. Im-
plementation details including programming languages
and high performance off-the-shelf communication li-
braries do not always guarantee good performance as
seen in Tables I and III. The choices of data structures
and parallel system design are critical for good perfor-
mance in our Java HarpLDA+, as shown in Figures 4
and 6.

• Asynchronous parallel designs are favorable for scala-
bility and robustness. However, with increasing paral-
lelism and computation capacity provided by manycore
and GPU servers, synchronized parallel designs can
achieve better performance on a moderate sized cluster
for big data problems in Table II.

Incorporating more parallelism, such as vectorization, into
LDA trainers can be further explored in future work. Also,
the similar characteristics of two large families of Machine
Learning algorithms CGS (MCMC algorithm) and SGD
(Numerical Optimization algorithm) are interesting topics
for building learning systems.
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